Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 22(6): e202200021, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35562643

RESUMO

Cobalt carbonates and derivatives represent most promising cost-effective materials for energy storage, conversion and upgrading. Morphology determines the performances, as size, shape and electronic configuration are key factors for tunable properties in the area of batteries, catalysis, magnetics and plasmonics. However, there is lack of insights in literature on morphological control of cobalt carbonates during hydrothermal and solvothermal conditions. Therefore, this review provides detailed discussion on synthesis, formation mechanism and morphological control of nanosheets, wires, spheres and cubes of cobalt carbonates. Furthermore, the influence of experimental conditions and plausible mechanism which govern the growing processes were further discussed in details. The outcome of this short review will offer insights into rational design of inexpensive metal carbonates for numerous other energy and environment applications.

2.
Front Chem ; 9: 778579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127642

RESUMO

Hydrogenolysis of glycerol to propylene glycol represents one of the most promising technologies for biomass conversion to chemicals. However, conventional hydrogenolysis processes are often carried out under harsh H2 pressures and temperatures, leading to intensive energy demands, fast catalyst deactivation, and potential safety risks during H2 handling. Catalytic transfer hydrogenolysis (CTH) displays high energy and atom efficiency. We have studied a series novel solid catalysts for CTH of glycerol. In this work, detailed studies have been conducted on energy optimization, tech-economic analysis, and environmental impact for both processes. The key finding is that relatively less energy demands and capital investment are required for CTH process. CO2 emission per production of propylene glycol is much lower in the case of transfer hydrogenolysis. The outcome of this study could provide useful information for process design and implementation of novel hydrogenolysis technologies for other energy and environmental applications.

3.
Chem Rec ; 21(1): 133-148, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33180367

RESUMO

Xylitol is commonly known as one of the top platform intermediates for biomass conversion. Catalytic deoxygenation of xylitol provides an atomic and energetic efficient way to produce a variety of renewable chemicals including ethylene glycol, 1,2-propanediol, lactic acid and 1,4-anhydroxylitol. Despite a few initial attempts in converting xylitol into those products, improving catalyst selectivity towards C-O and C-C cleavage reactions remains a grand challenge in this area. To our best knowledge, there is lack of comprehensive review to summarize the most recent advances on catalyst design and mechanisms in deoxygenation of xylitol, offering important perspective into future development of xylitol transformation technologies. Therefore, in this mini-review, we have critically discussed the conversion routes involved in xylitol deoxygenation over solid catalyst materials, the nanostructures of supported metal catalysts for C-H, C-C and C-O bond cleavage reactions, and mechanistic investigation for xylitol conversion. The outcome of this work provides new insights into rational design of effective deoxygenation catalyst materials for upgrading of xylitol and future process development in converting hemicellulosic biomass.


Assuntos
Éteres/síntese química , Glicóis/síntese química , Xilitol/química , Catálise , Hidrogênio/química , Metais Pesados/química , Modelos Químicos , Nanoestruturas/química , Oxirredução
4.
Chem Rec ; 20(11): 1236-1256, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32767665

RESUMO

With increasing interest in developing biodegradable polymers to replace fossil-based products globally, lactic acid (LA) has been paid extensive attention due to the high environment-compatibility of its downstream products. The mainstream efforts have been put in developing energy-efficient conversion technologies through biological and chemical routes to synthesize LA. However, to our best knowledge, there is a lack of sufficient attention in developing effective separation technologies with high atom economics for purifying LA and derivatives. In this review, the most recent advances in purifying LA using precipitation, reactive extraction, emulsion liquid membrane, reactive distillation, molecular distillation, and membrane techniques will be discussed critically with respect to the fundamentals, flow scheme, energy efficiency, and equipment. The outcome of this article is to offer insights into implementing more atomic and energy-efficient technologies for upgrading LA.


Assuntos
Ácido Láctico/isolamento & purificação , Diálise , Destilação , Filtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...